nnnnnnnnnnnnnnnnn

Loyola University Chicago

Loyola eCommons
gtor?gﬁw(e;;ksscience: Faculty Publications and Faculty Publications
5-20-2013

Spring11: PDC in CS1/2 and a mobile/cloud intermediate mobile/
cloud intermediate software design course

Joseph P. Kaylor

Konstantin Laufer
Loyola University Chicago, klaeufer@gmail.com

Chandra N. Sekharan
Loyola University Chicago

George K. Thiruvathukal
Loyola University Chicago

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

b Part of the OS and Networks Commons, Programming Languages and Compilers Commons, Science
and Mathematics Education Commons, Software Engineering Commons, and the Systems Architecture

Commons

Recommended Citation

J. Kaylor, K. Laufer, C. N. Sekharan, and G. K. Thiruvathukal. Spring11: PDC in CS1/2 and a mobile/cloud
intermediate mobile/cloud intermediate software design course. In Proc. 3rd NSF/IEEE-CS TCPP
Workshop on Parallel and Distributed Computing Education (EduPar), Boston, Massachusetts, USA, May
2013.

This Presentation is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It
has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an authorized
administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

www.manaraa.com

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Spring-11: Introducing PDC topics into CS1/2 and a Mobile- and
Cloud-Based Intermediate Software Design Course

EduPar-11 Early Adoption Report, 2013 Update, 15 March 2013

Joseph P. Kaylor, Konstantin Ldufer,! Chandra N. Sekharan, and George K. Thiruvathukal
Department of Computer Science, Loyola University Chicago, laufer@cs.luc.edu

Overview

In this brief update, we inform the TCPP Curriculum Committee of our continued efforts as early
adopters. Prior to this update, during spring 2011, we implemented three three-week PDC
course modules (20% of our 15-week semester) targeting three required courses usually taken
in the second year. Then, during AY 2011-12, we implemented four three-week advanced PDC
course modules in programming and distributed computing targeting electives typically offered
every three semesters.?

Currently, during AY 2012-13, we are moving PDC topics further down into CS1 and CS2,
fleshing out PDC coverage in our intermediate object-oriented development course (CS 313),
and stepping up evaluation.

Details of Our Current Focus on the Three-Course Intro Sequence

Recent changes in the environment of Loyola University Chicago’s Department of Computer
Science include a clear differentiation among our four undergraduate majors (BS in Computer
Science, Software Engineering, Information Technology, and Communication Networks and
Security), growing interest in computing among science majors, and an increased demand for
graduates with mobile and cloud skills. In our continued effort to push parallel and distributed
computing topics further down into the introductory sequence, we are focusing on these three
existing courses:

CS1: In response to a request from the physics department, we started to offer a CS1 section
aimed at majors in physics and other hard sciences this spring 2013 semester. This section
includes some material on numerical methods at the K and C levels, and about 9 class hours will
be dedicated to sequential and parallel versions of these algorithms and the possible resulting
speedup, using data parallelism in C#. For example, we can use threads for speeding up
trapezoidal rule integration.

for (1 = 0; i < numThreads; i++) { // create and start new child threads
its[i]=new IntegTraplRegion(start, end, granularity, fn);
childThreads[i] = new Thread(new ThreadStart (its[i].run));
childThreads[i].Start () ;
// set the range for the next thread
start = end;

! Department chair and corresponding author
2 Details are found in our papers in the EduPar 2011 and 2012 workshop proceedings, respectively.

end = a + ((1 + 2.0d) / numThreads * range);

}

for (i = 0; 1 < numThreads; i++) {
childThreads([i] .Join(); // wait for child threads to finish
totalArea += its[i].getAreal();

CS2: We have emphasized PDC topics in CS2 starting in fall 2011. The course now includes a
9-hour PDC module on task parallelism, speedup, and load balancing in algorithms involving
arbitrary precision arithmetics. We present these topics at the C and A levels in the form of
various examples. For example, we can compute Fibonacci numbers based on repeated squaring
of 2-by-2 matrices of Biglntegers in Java, experiment with the speedup resulting from executing
lines (3) and (4) in separate threads, and explore load balancing between these unequal tasks.

public BigInteger[] matMultFib(final BigInteger[] £fibK) {
final BigInteger[] matFib2K =new BigInteger([2];
matF[0] = fibK[0].multiply (fibK[0]) .add (fibK[1].multiply (fibK[1]1)); // (3)
matF[1] = fibK[1l].multiply (fibK[0].shiftLeft (1) .add(fibK[1])); /7 (4)
return matFib2K;

Intermediate Object-Oriented Development (CS 313): We have emphasized PDC topics in
this intermediate object-oriented software design and development course since fall 2011. As of
fall 2012, we switched the programming projects from C# back to Java with Android. The latter
provides a highly effective context for studying concurrency and distributed computing topics at
the C and A levels. Our double 18-hour PDC module covers external and internal events,
background threads, offloading computation from the mobile device to the cloud,® and observing
the resulting throughput-latency tradeoff. The following example, based on a brute-force prime
number checker, illustrates these topics, as well as practical considerations such as task
cancellation and progress reporting; for sufficiently large primes, the remote task returns almost
instantaneously, while the local one is still churning (see Figure 1 below).

// local task: i is the number to check
final long half = 1 / 2;

final double dHalf = half;

for (long k = 2; k <= half; k += 1) {

if (isCancelled()) break;
publishProgress ((int) ((k / dHalf) * 100));
if (1 $ k == 0) return false;

}

return true;

// task to invoke essentially the same code on the remote side
final HttpResponse response = client.execute (request);
final int status = response.getStatusLine () .getStatusCode () ;

3 Jason H. Christensen. 2009. Using RESTful web-services and cloud computing to create next
generation mobile applications. In Proc. OOPSLA '09. ACM, New York, NY, USA, 627-634.
DOI=10.1145/1639950.1639958.

@ PrimeChecker C

Candidate:: 99989 Check Cancel

Enabled
Remote http://laufer-primechecker.herokuapp.com/
Enabled

Remote http://laufer-primechecker2.herokuapp.com/

Figure 1: Partial screenshot of completed remote prime checking task and ongoing local one

Pervasive Computing Capstone: Beyond our three regular courses, we have rolled out a
research capstone course in which students further develop ideas from CS 313 and subsequent
courses.

Evaluation

Evaluation of our PDC course modules will include at least one quiz or exam where the students’
understanding of the covered topics is measured using a pre- and post-test design. During

2012, we have made progress toward unified proficiency assessment instruments for certain
modules. As representative examples, we have included the proficiency assessment instrument
in concurrency for the advanced programming module and the course effectiveness evaluation
instrument for CS 313 in the appendix.

We have conducted the concurrency assessment twice so far with the following results
(normalized to 100 points), suggesting that the material is challenging but a decent command
can be imparted through the module we have developed.

Statistic Count Min Max RangeAvg Med Stdev Variance
Fall 2010 14 60 100 40 76 71 13 167
Spring 2012 9 63 87 24 80 83 7 56

Future Plans

e Algorithms: Our data structures and algorithms course (CS 363) is offered every fall. We
are developing a suitable module that includes the following topics: models of
computation and complexity, basic algorithmic paradigms, and specific problems and
their algorithmic solutions.

e FEvaluation: Once our course modules have stabilized, we will need to measure their
effectiveness longitudinally over a three- to five-year period. We also intend to refine our
current evaluation approach by working with Loyola’s Center for Science & Math
Education, as well as the TCPP and fellow early adopters.

e Dissemination: We consider holding workshops for subsequent adopters in the Midwest.

Appendix A: Proficiency Assessment Instrument for Concurrency Topics

We have used following assessment instrument in conjunction with the concurrency module in
the programming languages (CS 372) and advanced object-oriented programming (CS 373)
courses. We welcome feedback on this instrument during or after the workshop.

e Suppose we have a soccer stadium with two entrance doors and need to keep track of the
number of spectators currently inside. We use a shared mutable variable count for this
purpose. Whenever a spectator enters, the following steps are executed, with the intent
of incrementing the shared count:

let inc () = {
let local = !count
count := local + 1

Suppose the stadium is empty, count is zero, and two spectators enter at the same time
through different doors. What is the conceptually correct value of count once the two
spectators are inside?

e Under the same scenario, and given our implementation of inc, what are the possible
resulting values for count? Which one(s) are conceptually correct?

e Still under the same scenario, one possible ordering of the four steps corresponding to
the two invocations of inc is

let locall = !count // f1
count := locall + 1 // sl
let local2 = !count // f2
count := local2 + 1 // s2

where locall and local2 are distinct local variables associated with the two doors,
respectively. Is the following ordering possible?

let locall = !count // f1
count := locall + 1 // sl
count := local2 + 1 // s2
let local2 = !count // £2

e List all other possible orderings of these steps, using the abbreviations f i for fetch i and s
i for set i as shown in the comments. (That is, you would list the ordering from the
previous subproblem as "f1 s1 s2 f2".)

e What is the root cause of the problem observed here? (check one)

o choice of a functional programming language

o use of a shared mutable variable

o use of a simple type instead of a data structure
o use of local variables

e What kind of mechanism can you use to ensure that only correct orderings of these steps
occur? (check all that apply)

o encapsulate the shared count inside a thread-safe data structure

o use an explicit locking mechanism in inc to enforce mutually exclusive access to
the shared count
o use an imperative programming language
o use message passing instead of shared memory
Suppose we have two philosophers. The first one, Kant, behaves like so:
think for 10 minutes
wait for any available fork and grab it when available
think for 2 minutes
wait for any available fork and grab it when available
eat for 5 minutes
release both forks
The second one, Heidegger, behaves like so:
think for 11 minutes
wait for any available fork and grab it when available
think for 2 minutes
wait for any available fork and grab it when available
eat for 5 minutes
release both forks
Suppose Kant and Heidegger sit at the same table with two forks available and start
their respective behaviors at the same time. Give an event trace, that is, a precise
description of what happens in the form of observable events such as:
a. At minute 4, Kant takes fork 1.
b. At minute 7, Heidegger releases fork 2.
c. ...
What type of undesirable situation does this scenario illustrate? (check one)
o lack of thread safety
o run-time type error
o memory leak
o deadlock
What are possible ways of avoiding this kind of undesirable situation? (check all that
apply)
o use an explicit locking mechanism to enforce mutually exclusive access to each
fork
provide at least one more fork
o treat both forks as a single resource bundle that must be acquired together at the
same time
o provide a fork and a knife instead of two forks and rewrite the behaviors such that
each philosopher must acquire the fork first and then the knife
Suppose there are three forks instead of two. Suppose Kant and Heidegger sit at the
same table with the three forks available and start their respective behaviors at the same
time. Give an event trace, that is, a precise description of what happens in the form of
observable events such as:
a. At minute 4, Kant takes fork 1.
b. At minute 7, Heidegger releases fork 2.
C.

S0 Q0T

S0 Q0T

Appendix B: Course Effectiveness Evaluation Instrument for CS 313

We have prepared the following evaluation instrument to measure the effectiveness of the new
format of our Intermediate Object-Oriented Development (CS 313) course, based on Riley.* The
rating questions use a suitable five-point Likert scale. We are now evaluating the fall 2012
section and hope to have a sufficient number of responses ahead of the May 2013 EduPar
workshop. We will also evaluate the ongoing spring 2013 section using this instrument. We
welcome feedback on this instrument during or after the workshop.

e Your overall GPA at Loyola

e Your approximate computer science GPA at Loyola

e Your class standing

e Rate your Java expertise BEFORE taking this course

e Rate your Java expertise AFTER taking this course

e Rate your Android expertise BEFORE taking this course

e Rate your Android expertise AFTER taking this course

e Rate your agile development (testing, refactoring, pair programming) expertise BEFORE
taking this course

e Rate your agile development (testing, refactoring, pair programming) expertise AFTER
taking this course

e Rate your software architecture and design expertise BEFORE taking this course

e Rate your software architecture and design expertise AFTER taking this course

e Rate your event-based programming expertise BEFORE taking this course

e Rate your event-based programming expertise AFTER taking this course

e Rate your thread-based concurrency expertise BEFORE taking this course

e Rate your thread-based concurrency expertise AFTER taking this course

e Rate your cloud computing expertise BEFORE taking this course

e Rate your cloud computing expertise AFTER taking this course

e Rate your feeling of preparedness for the job market BEFORE taking this course

e Rate your feeling of preparedness for the job market AFTER taking this course

e Rate the effectiveness of the projects for learning agile development

e Rate the effectiveness of Android for learning software architecture and design

e Rate the effectiveness of Android for learning event-based programming

e Rate the effectiveness of Android for learning thread-based concurrency

e Rate the effectiveness of Android for learning about cloud-based services

e Please provide any suggestions or other comments here

4 Derek Riley. 2012. Using mobile phone programming to teach Java and advanced programming to
computer scientists. In Proc. 43rd ACM Tech. Symp. Comp. Sci. Education (SIGCSE '12). ACM, New
York, NY, USA, 541-546. DOI=10.1145/2157136.2157292.

	Spring­11: PDC in CS1/2 and a ￼￼mobile/cloud intermediate mobile/cloud intermediate ￼software design course
	Recommended Citation

	EduPar-11 Early Adoption...eb 2013) - Google Drive

